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I. INTRODUCTION 

A. The TRISTAN Isotope Separator 

The TRISTAN on-line isotope separator facility, located 

at the Ames Laboratory Research Reactor, began producing mass 

separated short-lived gaseous fission products in October 

1966. It was the first such facility to become operational 

at a reactor. Since that time, the TRISTAN group has been 

involved in a systematic and detailed study of the nuclear 

properties of gaseous fission products as veil as the devel­

opment of the associated eguipment and techniques necessary 

to support such a program. The primary thrust of the program 

is to construct nuclear decay schemes of mass separated 

neutron-rich nuclides produced by thermal neutron fission of 

23SU. While gamma-ray spectroscopy is the principal tool 

used in these stndies. the detector array also provides the 

capability of studing half-lives, beta-ray spectra, delayed 

neutron emission, internal conversion electron spectra and 

gamma-gamma angular correlations in an on-line configuration. 

Since the facility went into operation, the decay 

schemes of about 38 nuclides have been determined for fission 

products in the mass ranges of 85 to 9 3 and 136 to 143- More 

than fifty publications have come out this work, with about 

eleven papers giving facility descriptions. 

Even though the TRISTAN facility is adequately described 

elsewhere [1 ], a general description of the isotope separator 
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should be given here since this work concerns itself with the 

development of a new target system and an interested reader 

may need a convenient reference. The system layout prior to 

July 1976 is illustrated in Figure 1. 

The target is located at Face 6 of the Ames Lab Research 

Reactor and utilizes the external neutron beam from that beam 

tube. The thermal neutron flux at this port has been meas­

ured to be about 3x10' neutrons/cm^/sec. This represents 

about 65X of the total neutron flux, the remainder being epi-

thermal neutrons. The target is an aluminum container with 

provision for an outlet to the transfer line and an inlet for 

xenon and krypton doped helium support gas that helps to 

transport the fission products as «ell as sustain the plasma 

in the ion source. Inside the target container there are 

aluminum trays to contain the «'«0 target material, original­

ly uranyl stearate. More than 10 grams of highly enriched 

uranyl stearate may be put into a single target load. Fis­

sion products which can diffuse out of the target are trans­

ported to the ion source via a 2-m teflon lined neoprene tube 

by the mechanism of molecular flow with some assistance from 

the sweeping action of the support gas. Thus only gaseous 

fission products can arrive at the ion source. This limits 

the activities available for study to xenon, krypton and 

their daughters, although a fresh uranyl stearate target will 

emanate some bromine and iodine for a period of a few weeks. 
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Figure 1. Layout of the TRISTAN isotope separator system. 
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at best. 

The ion source operates in the oscillating electron mode 

[2]. The discharge chamber consists of a boron nitride (BN) 

inlet plate and BN outlet insulators, a tantalum anode (typi­

cally operated at 40 volts), a tungsten filament (typically 

operated at 40 amps), a molybdenum end cap with a 1.5-mm 

diameter exit hole, a stainless steel end plate and a 

tantalum heat shield. The support gas mentioned above is 

necessary since the fission product emanations alone would be 

insufficient to sustain a stable discharge. The xenon and 

krypton provide mass markers which aid in determining when 

the ion beam is properly focused. The ion source operates 

best in the 1 to 3 utorr region, but can be operated above 15 

utorr, as measured at the differential pump located below the 

ion source. 

The positive ions produced in the ion source are ex­

tracted through the exit hole by a conical electrode operated 

at about 5 kV. The ions are then further accelerated by an 

acceleration drift tube operated at 55 kV. Ion beam focusing 

is accomplished by means of a focus lens with a spherical 

electrostatic field (typically operated at 20 kV) and another 

lens with a cylindrical field (typically operated at 10 kV) 

to control the height of the beam. The vertical position of 

the ion beam is controlled by a pair of deflection plates lo­

cated immediately before the separating magnet, with variable 
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potential from -300 to +300 V. 

The separating magnet is a 90° sector magnet with a mean 

radius of 160-cm and a mass range of ±7* of the central mass 

at the focal plane. 

The collector box, positioned after the separating mag­

net, selects the particular mass to be studied by means of a 

4-mm slit in an aluminum plate in the focal plane of the mag­

net- A fluorescent screen may be lowered over the slit to 

observe the position and shape of the stable xenon and kryp­

ton mass markers. The shape of non-visible beams can be de­

termined by use of a beam scanner. The beam profile is dis­

played on an oscilloscope and beams of less than 300 pA cur­

rent may be accurately focused. Since many experiments must 

be performed over a long period of time, the beam position 

may tend to drift. A beam position stabilizer inside the 

collector box senses any drift by detecting an imbalance in 

beam current on two adjacent pins, separated by about 3-mm 

and applies a correction voltage to the acceleration voltage 

of the separator, thus shifting the beam position until the 

current on the pins balance. 

After the desired mass is selected in the collector box, 

the beam enters the switch magnet where it is routed to one 

of four experimental areas. The magnet has five outlet ports 

at: 0®, ±22.5® and ±45®. One of the 22.5® ports is not cur­

rently in use. 
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One 450 port leads to a moving tape collector (MTC) 

where all the gamma-ray spectroscopy experiments are per­

formed. The MTC contains about 2000-m of aluminized Mylar 

tape with a 0.008-mm Al layer and a 0,025-mm Mylar layer. 

The tape may be moved forward or backwards, at various 

speeds, either continuously or in discrete steps. Two 

stations along the tape are available for gamma-ray analysis 

of an activity. One is located upstream, at the point of 

beam deposit, and is generally used to obtain equilibrium 

spectra and enhanced parent spectra. The other is located 

downstream and, after a suitable delay, is used to obtain 

enhanced daughter spectra. Both stations can accommodate two 

Ge(Li) detectors (180® apart} for gamma-gamma coincidence ex­

periments, and both may be fitted with 0.025-mm Mylar windows 

for low-energy spectra obtained with LEPS detectors. A 

windowless Si(Li) detector for measuring conversion electron 

spectra can also be positioned at either station. This de­

tector may be moved into the HTC vacuum in close proximity to 

the tape itself. 

A third detector station houses a plastic scintillator 

and is used for beta-ray spectrum measurements. This detec­

tor is constructed so that the tape passes through the 

scintillating material, providing a nearly 4-pi geometry. 

A seven-detector system for gamma-gamma angular correla­

tions may also be added to the MTC when such experiments are 
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desired. The system consists of one Ge(Li) detector and six 

Nal(Tl) detectors. A complete description of this detector 

system is given by Basinger et al- [3]. 

A sample deposit box is located on one of the 22.5® 

ports of the switch magnet. This box allows a collected mass 

to be removed from the isotope separator system for off-line 

analysis. This is particularly useful when a chemical sepa­

ration is necessary to isolate a long-lived member of a decay 

chain and for preparing longer-lived gamma-ray standards for 

off-line use. 

The switch magnet port at 0® bas been used for delayed 

neutron emission studies. A ^He detector and a small moving 

tape collector are available for experimentation at this 

port. 

The second 45° switch magnet port is connected to a 

double-focusing beta-ray spectrometer. The resolution of the 

spectrometer is sufficient to yield accurate beta-ray spectra 

of short-lived nuclides, and to resolve the large number of 

conversion electron peaks exhibited in the decay of odd-A or 

odd-odd nuclei. A complete description of the spectrometer 

is given by Halbig et al- [4]. 

The overall quality of the separated beam delivered to 

any of the experimental stations is excellent- The only sig­

nificant contamination found in a well-focused beam is due to 

formation of hydride ions. Formation of a hydride ion causes 
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interference from the decay of activities one mass unit lower 

than the mass desired. Typically this contamination is on 

the order of a few percent, but may be as high as ten per­

cent. In one instance, for mass 94, the contamination from 

mass 93-hydride was estimated to be Q5% of the total activi­

ty. However, this is a rather extreme case, since the fis­

sion yield of «•Kr is only about 20* of that for "Kr, and 

transport losses are much larger since the half-life of '•Kr 

is only about 16% of that for *3Kr. 

Possibly the major short-coming of the TRISTAN facility 

as originally used was, as mentioned earlier, the inability 

of the uranyl stearate target to release fission products 

other than xenon and krypton. 

B- Statement of the Problem 

Recently, the lack of non-rare gas fission products has 

become a critical factor in the future of the TRISTAN facili­

ty. From a scientific point of view, there is a real need to 

fill in the gaps in nuclear systematics, particularly on the 

neutron-rich side of stability if the hope of a consistent 

nuclear structure theory is to be realized. There are many 

nuclides that have not been studied, but presumably could 

lend themselves to detailed study if they could be transport­

ed from the target into the ion source. From a practical 
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standpoint, if the TRISTAN project is to continue, some al­

ternatives to the rare gases must be found, since nearly all 

the rare gas study objectives have been achieved. Finally, 

the political atmosphere needs to be considered. Funding 

prospects for basic research in general, and the TRISTAN pro­

ject in particular, are not what most scientists would con­

sider adequate. It has become necessary to demonstrate an 

ability to do "frontier research" to be assured of favorable 

funding status. It seems reasonable, therefore, to attempt 

to develop a target system that can make the study of non-

rare gas fission products the "frontier" for the TRISTAN fa­

cility to explore. 

The development of non-rare gas capabilities proceeded 

along three paths: a He-jet transport system coupled to an 

ion source; an integrated target-ion source system that would 

place the ion source directly in the neutron beam; and the 

use of alternative target materials at higher temperatures 

where non-rare gas fission products may be volatile. A de­

scription of the progress of each of these approaches is 

given by Talbert et al. [5]. The He-jet was considered to be 

a long range project, but worth pursuing» The in-beam ion 

source was considered the most likely approach to succeed 

since it would emulate the already proven system at the 

Studsvik, Sweden on-line facility [6]. The heated target 

system was considered the quickest approach to test since it 
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would require minimum alteration to the existing isotope sep­

arator system. It also carried the hope of being able to 

control, to some extent, the chemical species volatilized by 

controlling the temperature. The heated target system is the 

topic of this thesis. 

Uranium tetrafluoride was chosen as the target material. 

It has good thermal stability with only two significant de­

composition reactions: 

30F^ + Og --> UOg • 2UFg (1) 

and 

UF^ •  —> uOg + uhf. (2) 

Reaction (1) should not occur below about 750oc and since the 

target will be under a good vacuum, there should be very 

little oxygen present to cause the reaction to proceed. Re­

action (2) becomes spontaneous at about 250®C. While the 

vacuum will keep water vapor from the atmosphere from enter­

ing the target, extreme care must be taken to avoid the 

presence of water in the uranium tetrafluoride itself. 

à more fundamental reason for using uranium tetrafluo­

ride may be found by noting the low boiling points of many 

fluorides that could he formed in the target. As the fission 

fragments thermalize in the target matrix, they should pick 

up fluorine atoms and take on the chemical properties of 
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their respective fluoride molecules at the target temperature 

and pressure. Table 1 lists the boiling points of halides of 

some elements produced in fission. A study of this table in­

dicates that the fluorides are generally more volatile than 

the corresponding chlorides, bromides or iodides. Further­

more, based on a consideration of boiling points alone. As, 

Se, Br, Kr, Zr, Nb, Mo, Tc, Ru, Rh, Sn, Sb, Te, I and Xe 

could be expected to emanate from a uranium tetrafluoride 

target heated to about 800*0. 

A series of articles by Weber et al. [8, 9, 10] describ­

ing the volatilization of various fission products from a 

uranium tetrafluoride matrix were found. They reported 

volatilizing Se, Kr, Zr, Nb, Ho, Tc, Bu, Sn, Sb, Te, I and 

Xe, in good agreement with what may be expected based on 

boiling point considerations. At temperatures of 800®C they 

reported yields of 70% to 95% with half-times between 5 and 

15 seconds. Although the high yields were promising, the 

long half-times (time required for half of the total yield to 

be volatilized) would seem, at first glance, to eliminate the 

possibility of using this procedure to study activities with 

half-lives less than a few seconds. However, this was not 

expected to be a problem for two reasons. First, the target 

on the isotope separator is a dynamic system, that is fission 

products are continually being formed and volatilized, both 

from the bulk material and from surfaces, whereas in Weber's 
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Table 1. Boiling points of halides of elements produced in 
thermal neutron fission of Z'SU-

Haliae_bgiling_2oint_ia_2&l 

Element F CI Br I 

As III 63 130 221 403 
As V -53 
Se IV >100 288 
Se VI -35 
Br I -20 5 59 
Br III 135 
Br V 41 
Kr 
Rb I 1410 1390 1340 1300 
Sr II 2490 1250 dz a 
Y III >1387 1507 700 
Zr IV 600s3 331s 357s 600a 
Nb V 23 6 254 362 
No VI 35 
Tc VI 55 
Su V 250 
Rh III 600s 800s 
Ag I 1159 1550 >1300d 1506 
ca II 1758 960 863 796 
In III >1200 300s >436s >210 
Sn IV 705s 114 202 364 
Sb III 319s 283 280 401 
Sb V 150 79 401 
Te IV >97 380 >380 421d 
Te VI 36 
I I 97 116a 184 
I V 98 
I VII 4. 5s 
Xe 
Cs I 1251 1290 13 00 1280 
Ba II 2137 1560 a 
La III >1000 
ce III 2300 1727 1397 
Pr III 1700 1547 

iprom reference 

2d=decom poses. 

3s=sublines. 

[7]. 
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experiments the samples were irradiated and allowed to decay 

for a day before heating. The separator would make good use 

of the recoil enhanced fast diffusion of fission products 

near the surface of the uranium tetrafluoride matrix, but in 

off-line experiments, like Weber's, this effect would not be 

seen. Secondly, an isotope separator does not require 

enormous yields from the target to provide adequate activi­

ties for study. Even if the total diffusion were slow, suf­

ficient activity should be volatilized in a tenth-time (time 

required for one-tenth of the total yield to be volatilized) 

to make nuclear spectroscopy studies feasible. 

At the onset of the project, the TRISTAN facility seemed 

to be the only isotope separator considering this type of 

target system. However, when the first on-line experiment 

was beginning, a parallel study by Burkard et al. [11] was 

brought to our attention. Although their results were nega­

tive, it seemed that the system developed and the TBISTAN 

isotope separator configuration was sufficiently different to 

warrant continued experimentation. 
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II. OFF-LINE EXPERIMENTS 

A. Experimental Procedures 

After deciding to use heated uranium tetrafluoride as a 

target material, it was necessary to perform some off-line 

experiments to determine the feasibility of such a system. 

Knowledge of the elements that can be volatilized, the tem­

peratures required to volatilize them and any target design 

restrictions that might arise as a result of the properties 

of uranium tetrafluoride must be obtained in order to enhance 

the possibilities of an on-line success. These parameters 

were investigated by irradiating unenriched uranium tetraflu-

oride, sealed in quartz vials, in the Ames Lab Research 

Reactor for periods of one-half to one hour. The samples, 

consisting of less than 100 mg of uranium, were irradiated in 

a pneumatic rabbit system and alloyed to decay for about 24 

hours before handling. The samples were heated under vacuum, 

to simulate the conditions present in the isotope separator 

target, and any volatile elements were collected on a copper 

disk which was cooled with liquid nitrogen and located about 

10-cm above the irradiated uranium tetrafluoride- A drawing 

of the apparatus used is shown in Figure 2. After the 

heating period, the copper disk was removed and the activity 

collected was counted with a Ge(Li) detector to determine 

what elements were volatilized. In this way the volatility 

of various fission products could be determined as a function 
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Figure 2. Apparatus for the off-line experiments. 
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of temperature and heating time- The experiments were de­

signed to be qualitative since no information was available 

on the overall isotope separator efficiency. Without this 

information, no minimum required yield could be established 

for successful use of the target system and thus, on-line 

tests would be required as the ultimate criterion for success 

or failure. 

B. Results of the Off-line Experiments 

The off-line experiments resulted in the volatilization 

of Zr, Nb, Ho, Tc, Ru, Sb, Te, I and Xe isotopes from the 

heated uranium tetrafluoride and their collection on the 

cooled copper disk. Table 2 gives the minimum temperatures 

at which isotopes of each element could be observed consist­

ently. The minimum detectable activity was about 100 total 

counts, above background, in a photopeak. Typically the disk 

was counted for 30 minutes. The results in Table 2 agree 

well with what was expected on the basis of boiling points 

listed in Table 1. On the basis of chemical behavior and the 

correlation with boiling point data, it seems reasonable that 

As, Se, Br, Kr and Sn can also be volatilized. Fission prod­

uct isotopes of these elements were not observed since the 

half-lives are so short that they decayed away before the ex­

periment was performed. 
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Table 2- Approximate temperature required to volatilize 
certain fission products from uranium tetrafluoride. 

Temperature Temperature 
Element ®C Element ®C 

Zr 700 Sb 250 
Nb 400 Te 150 
Mo UOO I 150 
Tc 300 Xe 150 
Pu 400 

Although the experiments were not intended to be quanti­

tative, by normalizing yields at each temperature to the 

yield of a volatile element such as xenon and correcting for 

the amount of uranium tetrafluoride irradiated, length of 

decay and counting periods and the length of the irradiation, 

some indication of the yield versus temperature could be ob­

tained. As expected, the yield had a threshold at some mini­

mum temperature and rose quickly to a maximum yield at some 

higher temperature. Figure 3 shows the results of this 

treatment for »32Te and issxe. The other elements volatil­

ized showed similar behavior. In some cases the yields were 

low or the errors large enough that correction of the data 

gave meaningless results. The temperatures required to 

volatilize half the total yield are given in Table 3 for each 

element that yielded acceptable results. All the data used 

were from samples that were heated for one hour at a constant 
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Table 3. Temperatures required to volatilize half of the 
total yield from irradiated uranium tetrafluoride. 

Element 
Half-Temperature 

oc Element 
Half-Temperature 

oc 

Mo 
Tc 
Sb 

540 
480 
420 

Te 
I 
Xe 

730 
400 
260 

temperature. 

The results of the experiments to determine the elements 

that could be volatilized and the temperature dependence of 

the yields were essentially in agreement with the work per­

formed by Weber et al. [10]. However, several potential 

problems were indicated by these studies. 

Even trace quantities of water were sufficient to con­

vert the uranium tetrafluoride to uranium dioxide by means of 

reaction (2). In particular, experiments showed that there 

was sufficient water in the helium normally used as support 

gas to completely convert the uranium tetrafluoride to urani­

um dioxide in a relatively short time at elevated tempera­

tures. Further experimentation showed that if the helium was 

first dried by passing it through a suitable drying agent, 

such as magnesium perchlorate or molecular sieves, the prob­

lem could be eliminated. The simplest way of doing this 

would be to place a drying tube in the support gas line of 
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the isotope separator so that the helium could be dried be­

fore entering the target. 

Another problem was recognized while trying to solve the 

oxidation problem. Uranium tetrafluoride is a very finely 

divided powder and the addition of even a small amount of 

support gas is sufficient to blow it off any shelves or trays 

that are expected to contain it. Even simple evacuation of 

the target container was observed to cause the loss of nearly 

all the target material. Thus some means of mounting the 

uranium tetrafluoride was necessary to prevent it from 

becoming airborne. The use of graphite cloth and graphite 

cement: provided a solution to the problem. A slurry of ura­

nium tetrafluoride and the graphite cement was made and 

absorbed onto a section of the cloth. This was slowly dried 

at about 100*0, to prevent oxidation due to water in the at­

mosphere, and formed a rigid, porous material that could be 

impregnated with more than 100 mg UP^/cmz with minimal losses 

during evacuation or addition of support gas. Irradiation 

and heating of a section of the impregnated cloth showed that 

the yields were greatly increased. The gross counting rates 

were increased by more than a factor of ten, with particular 

enhancement observed for the more volatile elements such as 

1 Onion Carbide Corporation, Carbon Products Division, 
"OCAS" Cement Grade C-3U. 



www.manaraa.com

21 

iodine and xenon. 

Finally, it was anticipated from the beginning that 

transport line losses might be significant. To test this, a 

2-m section of 1.27-cm outside diameter stainless steel 

tubing vas wrapped with heating tape and insulation. An 

irradiated piece of impregnated graphite cloth was placed at 

one end and heated. The volatile fission products were col­

lected at the other end of the tube. After the heating 

period, the collected fission products were observed to cor­

respond with those expected for heating uranium tetrafluoride 

to the temperatures involved. While there were, of course, 

losses along the tube, they were not as large as had been 

feared and indeed the gross activity was comparable to that 

expected in other experiments. Thus transport from the 

target to the ion source was confirmed for a uniformly heated 

transfer line. 

C. Conclusions 

Uranium tetrafluoride absorbed onto graphite cloth was 

found to be a good target material* It was very stable at 

high temperatures, provided the system was free of both water 

and oxygen, with minimal losses of target material, A wide 

variety of non-rare gas fission products could be released 

with good yield at high temperatures, in the range of UOO to 
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800*0 and the indications were that they could be transported 

the required distance from the tarqet to the ion source. 

Therefore, based on the successes of the off-line experi­

ments, the next phase of the project, experimentation in an 

on-line configuration, could be justified. 
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III- THE FIRST ON-LINE EXPERIMENT 

A. Experimental Procedure 

The primary purpose of the first on-line heated target 

system was to observe non-rare gas fission products. Testing 

the target design for actual in-use reliability, its ability 

to achieve the necessary temperatures and to get some idea of 

the efficiency of this target system relative to the ambient 

temperature uranyl stearate targets normally used, were sec­

ondary purposes. 

To obtain a reference point for relative yield consider­

ations, a survey of some of the available masses was made 

using a large Ge (Li) detector. The survey was first made 

with a uranyl stearate target and consisted of accumulating a 

gamma spectrum at each mass where sufficient activity could 

hp produced to warrant data taking. The procedure was then 

repeated with the heated uranium tetrafluoride target at var­

ious temperatures. Mass chains with no rare gas member were 

given special emphasis in the heated target surveys, since 

observation of activity at one of those masses would give de­

finitive evidence of non-rare gas production. Iodine and 

tellurium activities were carefully searched for since they 

were expected to be among the fission product elements 

easiest to volatilize. The relative intensities of gamma-

rays from the decay of i3#Xe were used as an internal stan­

dard (since i3"Xe is available from the isotope separator 
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system) for calculating the relative efficiency of the Ge(Li) 

detector used in the surveys. 

B, Apparatus 

The target container built for the first on-line experi­

ment is shown in a cut-away view in Figure 4, The target was 

constructed of stainless steel, with thin walls facing the 

neutron beam to reduce neutron losses. An outer vacuum jack­

et, pumped separately from the isotope separator vacuum, 

served to distribute the heat evenly over the inner can which 

contained the uranium tetrafluoride. The vacuum jacket 

pumping line also served as a passageway for a thermocouple 

to monitor the temperature of the inner can. 

A tube through the vacuum jacket and into the inner can 

allowed the helium support gas to enter the target. The 

target material was arranged on graphite cloth shelves as 

shown in Figure 4. In the first on-line experiment, the 

target was loaded with 4 g of zasy as uranium tetrafluoride. 

The back flange of the target was welded on after the 

uranium tetrafluoride was in place. The target was heated by 

a heating coil mounted on the brackets provided on the back 

flange. The target heater could be controlled independently. 

A tube at the top of the target allowed volatile fission 

products to escape the inner can, enter the transfer line and 
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migrate to the ion source. The transfer line was a 2-m long 

stainless steel tube with a 1-27-cm outside diameter and a 

0-089-cm wall thickness. The tube was heated by wrapping it 

with heating tape and layers of asbestos tape for thermal in­

sulation. The heat on each half of the transfer line, the 

half nearest the ion source and the half nearest the target, 

could be controlled independently. In this way a temperature 

gradient could be maintained, if desired. 

C. Results of the First On-line Experiment 

When the target was first heated, there was an enormous 

amount of outgassing and operation of the isotope separator 

became impossible for several days, until the pressure de­

creased to operable ranges. Throughout the runs, the ion 

source pressure never really stabilized to a desirable, low 

pressure. The pressure was always erratic, due to continual 

outgassing, and this made operation of the isotope separator 

very difficult. At one point, the acceleration voltage, nor­

mally adjusted to 55 kV, could not be raised above 35 kV 

without the occurrence of arcing. This, along with the er­

ratic ion source operation, made the ion beam focusing and 

isotope separator stability very poor, requiring frequent 

retuning and reducing the overall efficiency of the separator 

system. 
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Because of the poor operating characteristics, the mass 

surveys were difficult to do and it was expected that the 

results would show large efficiency variations due to the 

variation of operating parameters encountered during the data 

taking process. In addition to the difficulties mentioned 

above, the target and transfer line never reached the desired 

temperature range of 600 to 8OOOC- The highest temperature 

reached was 400*0 which was high enough to volatilize, in 

good yield, only the most volatile of the elements desired. 

As the experiment proceeded, waste heat from the target 

ignited some Plexiglas used to insulate the acceleration 

voltage from the ground potential shielding, causing signifi­

cant damage and curtailing the experiment before any 

corrective measures could be undertaken. 

Throughout the surveys, no non-rare gas activities were 

observed, other than a barely detectable amount of *3*1 ob­

served in the unheated survey. However, gamma-ray spectra 

from the ambient temperature survey showed that there was no 

formation of hydrides, as mentioned earlier. The spectra 

from the heated surveys did show significant hydride forma­

tions This was probably related to the outgassing from the 

target. Residual solvent, used in preparing the uranium tet-

rafluoride slurry- could have provided the hydrogen atoms for 

hydride formation to occur. 
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Table 4. Gaseous activity yields for uranium tetrafluoride 
target relative to *3®Xe, 258.3-keV transition 
unsaturated yield of 1000 at ambient temperature. 

Temperature Relative yield % hydride at 
Mass at saturation saturation 

90 ambient 1080 ± 50 
91 M 830 ± 50 -

89 400 340 ± 10 45 ± 4 
90 n 530 ± 30 4.0 ± 0.5 
91 II 120 ± 10 3.6 ± 0.4 

138 ambient 3120 ± 110 » 

139 it 1040 t 60 -

141 II 34 ± 2 — 

137 400 2400 ± 200 — 

138 II 1470 ± 50 3.0 ± 0.3 
139 M 1020 ± 60 0.24 ± 0.04 
140 H 330 ± 10 8.2 ± 0.9 
141 11 35 ± 2 12.6 ± 1.6 

136% ambient 0,32 t o
 

•
 
o
 

U)
 

1 

-

The results of the surveys at ambient temperature and 

for the heated target are given in Table U. The relative 

yields are given as calculated at saturation activity for 

each mass to remove the half-life dependence of the results. 

The krypton masses, 89 to 91 in Table 4, show a decrease in 

yield for the heated target, whereas the xenon masses, 137 to 

111 in Table 4, show little change, except for mass 138, 

which shows a decrease. The data have not been corrected for 

fission yield. Doing so does not show any discernible trend, 

which may be attributed to the poor operating characteristics 
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of this system. The i3*I observed at ambient temperature was 

not observed at elevated temperatures. 

Table 5 compares the relative yields for the uranium 

tetrafluoride target with those for the uranyl stearate 

target. The ratio given in the final column gives the number 

of grams of as uranium tetrafluoride, reguired to give 

a yield equivalent to one gram of as uranyl stearate. 

The percent hydride contamination is given to illustrate the 

improvement obtained by the ambient temperature uranium tet­

rafluoride over uranyl stearate. 

D. Conclusions 

The most serious problem to be corrected was the poor 

thermal efficiency of the target. Because of the large heat 

loss from the target, the temperature did not reach the 

desired range and fission products would not be volatilized 

from the target. The heat loss also caused the fire. Thus, 

it was necessary to redesign the target to reduce heat losses 

so that higher temperatures could be attained and dangerous 

waste heat could be avoided. 

It was also deemed wise to avoid the use of Plexiglas as 

insulating material- thus eliminating the fire hazard inher­

ent in this material. Pyrex or quartz glass can be used as 

effective high voltage insulation, even though it may be 
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Table 5. Comparison of uranium tetrafluoride activity at 
saturation with uranyl stearate for gaseous fis­
sion products, relative to * 3®Xe, 258. 3-keV trans­
ition unsaturated yield of 1000 for uranium tetra-
fluoride. 

Uranium tetrafluoride 
3 g 23SU 

Uranyl stearate 
10_g_2 350 

Relative 
yield at 

Mass saturation 

% hydride 
at satur­

ation 

Relative 
yield at 

saturation 

% hydride Ratio 
at satur- of USt 

at ion to UP,. 

1371 2400 ± 200 none 15800 t 1400 none 2. 0 
138 3120 ± 110 none 81700 ± 2500 0.15 ± 0. 06 7. 9 
139 1040 ± 60 none 155000 ± 8000 0,71 t 0. 12 45. 
140» 330 ± 10 8 .2 ± 0.9 8200 ± 300 5.7 ± 1. 7 7. 5 
141 34 ± 2 none 200 ± 10 22 t 4 1. 8 

88 No OP 'it data for ««Kr 9500 ± 600 none — 

891 340 ± 10 45 ± 4 21800 ± 700 33.3 ± 2. 3 19. 
90 1081 ± 50 none 14000 t 600 10.9 ± 0. 8 3. 9 
91 83 0 ± 50 none 3050 ± 140 4. 1 i 0. 4 1. 1 

lUranium tetrafluoride data indicated were taken at UOO®C. 

expensive and fragile. 

Another serious problem may have been transfer line 

losses. The temperature of the transfer line never reached 

the desired level. To correct this, higher wattage heating 

tape should be used and more layers of asbestos, as insula­

tion, should be wrapped around the transfer line. The amount 

of asbestos insulation used in the first on-line experiment 

was limited by the diameter of the hole through the shielding 

wall. This hole should be enlarged for future experiments so 
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that more asbestos insulation can be wrapped over the trans­

fer line. The heating tapes will have to be more carefully 

wrapped over the transfer line to eliminate some cool spots, 

such as places where the line was bent, which were noticed 

during the experiment. 

Finally, since the uranium tetrafluoride target produced 

no hydride contamination, it was decided to use ambient tem­

perature uranium tetrafluoride targets, in place of uranyl 

stearate, as the normal target material. The rare gas yields 

were high enough for continued rare gas studies when targets 

containing 25 g of loaded onto 25 graphite cloth disks 

were used. With these targets, very little hydride contamin­

ation was observed, there was significant yield of even low 

fission yield xenon and krypton masses, reasonable yields of 

Iodine and some bromine could be obtained. 
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IV. THE SECOND ON-LINE EXPERIMENT 

A. Experimental Procedure 

The purpose of this experiment was to produce usable 

quantities of non-rare gas fission products and to demon­

strate that the difficulties experienced in the first on-line 

experiment had been overcome. The reliability of the new 

system was under test more than its efficiency. Uranium tet-

rafluoride had already been shown to be a suitable target ma­

terial during the period between the first and second on-line 

experiments. 

The mass surveys proceeded much like those in the first 

experiment, except that the 4-pi plastic scintillator, locat­

ed inside the HTC vacuum, was used to determine the yields, 

and gamma-ray spectra were taken to make positive identifica­

tion of the nuclides present. Again, special emphasis was 

placed on surveying mass chains with no rare gas member to 

give dramatic evidence of non-rare gas production. The 

available masses were surveyed before heating, when the 

target was at temperature and again after it had cooled off, 

to indicate any degradation of the target material. 

B, Apparatus 

The Plexiglas insulation was replaced with a 30-cm 

diameter Pyrex cylinder and the enlarged hole through the 
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shielding was fitted with a 15-cm diameter quartz tube. 

There was a hole in the Pyrex cylinder to allow neutrons 

access to the target, since Pyrex contains a substantial 

quantity of boron. To reduce further the fire hazard, a 

large blower was used to exhaust warm air from the shielding 

cavity. 

The new target is shown in Figure 5. The bend in the 

transfer line was made a part of the target for ease of as­

sembly. The pumps for the vacuum jacket were placed on the 

other side of the shielding wall, since space inside the 

shielding is at a premium. The transfer line, vacuum jacket 

pumping line, water cooling, electrical power and thermocou­

ples all had to come through the shielding wall via the 

quartz tube. 

In this target, the entire target chamber was surrounded 

by vacuum to insulate it thermally from the outer can. The 

target chamber was welded shut after 15 g of highly enriched 

uranium tetrafluoride was loaded into it. The can was heated 

with a 0.46-mm diameter tungsten wire which was electrically 

insulated by wrapping it around ceramic posts on the target 

container's flange. Tantalum foil, 0-13-mm thick, served as 

a heat reflector. 

The flange on the outer can was sealed with a water 

cooled 0-ring. To reduce heat transfer from the inner 

chamber to the outer can, all the contacts between them were 
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www.manaraa.com

35 

made via thin stainless steel protrusions which established a 

thermal gradient. 

The target was tested extensively off-line before being 

loaded with uranium tetrafluoride. It was determined to be 

leak-free, BOQOC. could be reached with relative ease, the 

tungsten filament had a long life time if the vacuum jacket 

was pumped effectively, and even at the highest internal tem­

peratures the outer jacket did not become significantly warm. 

Thus the target seemed to meet all the requirements neces­

sary to be considered worthy of on-line operation. 

C. Results of the Second On-line Experiment 

After the ambient temperature survey was made, the 

target heater was turned on and the high outgassing observed 

in the first experiment was again observed. The pressure 

came down into the operating range after several days of 

heating. Each time the temperature was increased, there was 

some additional outgassing which would cease after a few 

hours. 

Throughout the heated surveys the transfer line was 

maintained at about 800®C, while the target temperature was 

varied from 500 to greater than 8OOOC. During the heated 

surveys, the isotope separator itself functioned normally 

with none of the arcing problems experienced in the first ex-
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périment. 

In the survey made before heating, bromine and iodine 

were observed with good yield. However, as Table 6 shows, 

the yield decreased as the temperature was increased and did 

not return after the heat was removed. The gamma-ray spectra 

collected for the bromine and iodine masses were examined 

carefully for evidence of selenium and tellurium, but none 

was found. No evidence of any other non-rare gas fission 

product was observed at any of the masses surveyed. 

The yields tended to decrease upon heating, showed a 

maximum at higher temperatures, then decreased after the heat 

was removed. It should be noted that the survey made at 

500°C may not be characteristic of optimum performance since 

the ion source pressure was higher than for the other runs 

due to incompleted outgassing. Hence, the SOQOC survey 

yields are expected to be lower than they could have been, 

had the outgassing been completed. 

Other, less complete, surveys were made with tempera­

tures exceeding 800*0. In these surveys only non-rare gas 

activities were searched for, using gamma-ray spectroscopy 

for identification. As stated above, none were found. The 

possibility of formation of molecular ions, with single or 

multiple charges and single or multiple fluorine atoms, was 

explored, but no such species were observed for either rare 

gas or non-rare gas activities. 
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Table 6. Yields from surveys with a 15 g 23SUF. target, for 
the second on-line experiment. 

ÇPS_x_igs_at_sataiatigni 

Before After 
Nuclide heating 500*0 650®C heating 

B6Br 0. 155 0.006 0.009 -

87Br 0.277 0.001 0.016 -

88Br 0.283 0.001 0.022 -

87Kr 114. 11.0 3.78 41.1 
88Kr 72- 8.5 177. 44.6 
8»Kr 50.3 5,54 16.2 40.8 
90Kr 299. 4.23 21.2 67. 
9iKr 7. 1 2-08 51.9 36.0 
92Kr 4.13 0.75 9.8 2.58 
93Kr 0.499 0-425 1.29 0.188 
94Kr 0 .009 ± 1.3% 0.018 0.047 -

1 3 S I  130. 0.008 0. 034 ± 4.3* 0.002 
1 3 6 1  0.296 0.001 0.052 0.003 
135%% 1 = 35 2 = 67 0. 045 t  4,3% 3.85 
137Xe 132. 29.7 592- 176. 
»38Xe 157. 73. 470. 117. 
i39Xe 28.8 20.5 90. 57.4 
i*oxe 67. 19.7 89. 16.2 
i*iXe 3.03 3.06 2-75 0.170 
i*2Xe 0.323 0.269 0.480 0.017 
i*3Xe 0.012 0.017 0.018 -

:*~Xe 0 .001 ± 16.6* 0. 002 ± 7.5% 

^Standard deviations are less than 1%, except where noted. 

In all the surveys the hydride contamination was very 

low. There was no detectable hydride in the ambient tempera­

ture surveys both before and after heating. There was some 

observable hydride in the heated surveys, presumably associ­

ated with the outgassing, as it was worse for the lower tern-
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perature surveys where the outgassing was incomplete. For 

the worst case the hydride content, as determined by the 

amount of *OKr activity in the «»Kr beam, was about 1%. This 

is still significantly lover than that observed with the ura-

nyl stearate target, as reported in Table 5-

Since the system failed to produce any non-rare gas fis­

sion products, the question of whether or not any got into 

the ion source was explored. Three days after the surveys 

were completed, the system ""^.s dismantled and samples of ac­

tivity found at various positions in the transfer line and 

ion source were counted with a Ge(Li) detector. The result­

ing gamma-ray spectra were analyzed to see if any non-rare 

gas fission products could be observed. The long-lived ac­

tivities observed and their positions are indicated in Table 

7. 

The transport line inside the ion source, referred to in 

Table 7, is a stainless steel tube, about 10-cm in length, 

which is inside the vacuum housing of the ion source. For 

practical reasons, this section could not be heated indepen­

dently and hence was heated only by conduction from the rest 

of the transport line and from the ion source filament. This 

tube represented a cool spot in the transfer line and it 

picked up the greatest variety of fission products» Tellur­

ium and iodine, which were the most volatile non-gaseous fis­

sion products, were found everywhere in the system. 
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Table 7. Non-gaseous fission product activities found in the 
isotope separator system after the second on-line 
experiment. 

Transport Transport Transport 
line near line into line near Ion source 

Nuclide ion source ion source target End cap Anode 

i32Te a n o n a 
1311 a n a a • 
99Mo n 
9szr a a 

iQther nuclides have half-lives too short to be observed. 

The transport line near the target contained a brown 

viscous material which resembled a concentrated form of the 

solvent used in preparing the uranium tetrafluoride and 

graphite cement slurry. Apparently this was the cause of 

much of the ôucÇàSSiûy ëXperlânCëu. 

D. Conclusions 

Again, no non-rare gas fission products, other than 

bromine and iodine, were observed after mass separation. 

However, examination of the dismantled system showed that 

non-gaseous fission products were being volatilized from the 

target and some were getting into the ion source- Their 

absence after mass separation suggests that an insufficient 

amount of fission product activity was getting into and 
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coming out of the ion source, or the ion source was not 

efficiently breaking up the fluoride molecules, thus 

spreading the yield over a large number of masses represent­

ing many possible molecular ions. 

Insufficient yield arriving at the ion source was proba­

bly due to cool spots along the transfer line, particularly, 

as indicated in Table 7, in the unheated section inside the 

ion source. The solvent found in the transfer line could 

also have impeded the transportation of fission products from 

the target to the ion source. Insufficient yield getting out 

of the ion source could be a function of the ion source con­

struction. Once an ionized atom strikes a surface, it must 

diffuse off that surface in order to be extracted from the 

ion source. If the surface does not allow easy diffusion, 

the ion may remain trapped inside the ion source. Both boron 

nitride and tantalum, the major construction materials in the 

ionization cavity, are considered to be materials from which 

diffusion is difficult. 

Since Burkard et al. £11] did observe some zirconium 

fluoride molecular ions in their experiments, the formation 

of these complex ions may seem like a reasonable explanation 

for the lack of success. However, this may be discounted by 

two considerations. First, a very large atomic fluorine beam 

was observed. The beam current exceeded 30 uA and indicates 

ionization of large quantities of fluorine or fluoride mole­
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cules. Some fluorine could come from radiation damage to the 

uranium tetrafluoride target from the neutron beam. Second­

ly, on the basis of observations from reference [11], these 

complex molecular ions were searched for exhaustively, but 

none were found. This is an even stronger justification for 

concluding that the ion source was efficiently breaking up 

any fluoride molecules entering it. 

Thus, the failure to observe non-rare gas fission prod­

ucts can be assessed to losses of activity along the 

transport line and onto the surfaces inside the ion source. 
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V. DISCUSSION 

A. Reasons for Failure 

The general failure of the heated uranium tetrafluoride 

target system can be blamed on design restrictions imposed by 

the isotope separator configuration at the time of the exper­

iments. 

A major difficulty was imposed by the long transfer line 

required to transport volatile activities to the ion source. 

The length made it difficult to heat the line uniformly, and 

the two 90° bends in the line compounded the problem even 

further. Uniformly wrapping heating tape around the tube at 

the bends is nearly impossible, so that cool spots can be ex­

pected to form at these positions. Even if the transfer line 

could be heated uniformly, the losses due to adsorption onto 

the stainless steel surfaces could become a significant por­

tion of the yield. 

Some more problems arise due to the ion source design. 

As mentioned before, it was not practical to heat indepen­

dently the tube from the ion source base to the ionization 

cavity, resulting in a cool area where volatile fission prod­

ucts could, and did, condense. Another major concern in the 

ion source design is the retention of fission products on the 

materials being used inside the ion source, particularly 

boron nitride and tantalum. Fission products adhering to the 

anode, end cap, or other portions of the ion source may be 
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unable to diffuse into the ion source plasma region, thus 

reducing the yield. 

B« Suggestions for Improvement 

The primary improvement that could be made is to shorten 

the transfer line. A very short, preferably straight, trans­

fer line should greatly reduce the loss of activity before it 

reaches the ion source. Such a transfer line could be heated 

evenly by passing a high current through it if it was con­

structed of a thin metal. Thinness is mentioned only in that 

thinner metals usually have a higher resistance and hence a 

higher wattage could be achieved with less current than a 

thicker tube of the same metal. This would eliminate the 

problem of maintaining uniformity of temperature encountered 

with heating tapes. It would also allow the transfer line to 

be heated all the way into the ion source anode cavity. To 

avoid oxidation of the material used for the transfer line, a 

vacuum jacket would need to be built around the transfer 

line. The jacket would also serve as thermal insulation and 

could be water cooled, if necessary. 

The problems caused by the ion source design could be 

reduced by replacing the reactive boron nitride insulators 

with quartz and the tantalum anode with graphite. Diffusion 

from hot graphite is relatively easy, and the reactive sur­
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faces in the ion source could be eliminated. The design and 

operation of a graphite ion source differs considerably from 

that of the tantalum constructed "NcConnell" ion source, but 

would not present any real difficulty since the earliest type 

of ion source used on TRISTAN was of graphite construction. 

The biggest drawback of these suggestions is that they 

require a drastic change in the isotope separator configura­

tion. The ion source would have to be moved much closer to 

the neutron beam. While this would require a lot of time, 

effort, planning and money, these things have already been 

invested in the ion source relocation project, or the in-beam 

ion source system. The system is discussed by Talbert et al. 

[5] and involves an ion optics system to bring the ion beam 

from the ion source to the proper plane and height of the 

separating magnet. The ion source used is a graphite ion 

source, with the target on the anode. The system has the 

flexibility to allow the ion source to be raised slightly 

above the neutron beam so that a rare gas target could be 

used if desired. Thus it is possible to have a very short 

transfer line. The plans for a graphite ion source exist, 

although they would require considerable alteration for use 

with the heated target system in mind. 

h t  the time of writing, the in-beam ion source system 

has been operable for 9 months and has produced successfully 

non-rare gas fission products, many of which could not have 
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been produced by a successful heated uranium tetrafluoride 

target system. Therefore, there is not, at this time, a 

pressing need to implement these ideas for a new heated 

target system. 
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